
Introduction to Trees. Binary 
Search Trees
Welcome to the lecture on one of the most important data structures in programming! 
Today, we will explore trees and their special type 4 binary search trees.



�  Lecture 14
Introduction to Trees. Binary Search Trees (BST)
Data structures are the foundation of effective programming. Trees are a powerful tool for organizing and searching for information, which we actively 
use in modern applications and systems.



Lecture Objectives

Understanding the Structure

To study the hierarchical nature of trees 
and their basic properties

Practical Skills

To learn how to implement Binary Search 
Trees (BST) in C++

Applying Knowledge

To understand where and how to use BSTs 
in real projects



�  Part 1
What is a Tree?
A tree is a hierarchical data structure that naturally organizes information on the 
'parent-child' principle. Unlike linear structures (arrays, lists), trees allow for the 
representation of complex relationships between elements.

01

Nodes

Fundamental elements of a tree, containing data

02

Edges

Connections between nodes, defining the structure

03

Root

The primary node from which the tree originates

04

Leaves

Nodes without children, the endpoints of branches



Examples of Trees in Everyday Life

File System

Folders contain files and subfolders, forming a 
tree-like hierarchy. The root folder contains all 
other system elements.

Organizational Structure

Director ³ managers ³ employees. Each 
management level represents a node in the 
company's hierarchy.

Family Tree

Parents and descendants form a natural tree-
like structure, showing family relationships.



Key Terms

Tree Height

The maximum distance from the root to any leaf. Defines the depth of the 
longest branch.

Node Depth

The distance from the root to a specific node. The root has a depth of 0.

Subtree

A part of a tree that is itself a tree with its own root and descendants.

Node Degree

The number of direct children of a node. In a binary tree, the degree does not 
exceed 2.



Types of Trees

Binary Tree

Each node has no more than 2 children

Balanced Tree

The heights of the left and right subtrees 
differ by no more than 1

Complete Binary Tree

All levels are filled, except possibly the last 
one

Binary Search Tree

An ordered tree with special properties for 
fast searching



�  Part 2
Binary Search Trees (BSTs)
A Binary Search Tree (BST) is a special type of binary tree where elements are 
arranged in a specific order. This key property makes search, insertion, and deletion 
operations very efficient.

Main BST Property: For any given node, all values in its left subtree are less than 
the node's value, and all values in its right subtree are greater than the node's value.



Example BST Structure

        8
      /   \
     3     10
   /  \     \
  1    6     14
      / \    /
     4   7  13

This example demonstrates how the fundamental property of BSTs is maintained: left 
children are less than the parent, and right children are greater.

Let's verify the property:

Node 8: left subtree {1,3,4,6,7} < 8

Right subtree {10,13,14} > 8

Node 3: 1 < 3 < 6

Node 10: 10 < 14



Applications of BST in Programming

Fast Search

The average search complexity of O(log n) 
makes BST ideal for frequently performed 
search operations in large datasets.

Databases

Database indexes are often implemented using 
balanced search trees for quick record access.

Dictionaries and Sets

STL containers std::set and std::map in C++ use 
balanced search trees for efficient operation.



Implementing a Tree Node in C++
Let's start by defining the basic node structure. Each node contains data and pointers to its left and right children.

struct Node {
    int key;           // �A4G9A89 G7?4
    Node* left;        // '>474F9?L A4 ?96B7B CBFB@>4
    Node* right;       // '>474F9?L A4 CD46B7B CBFB@>4
    
    // �BAEFDG>FBD 8?O 8A8F84?874F88 G7?4
    Node(int k) : key(k), left(nullptr), right(nullptr) {}
};

Important: Initializing pointers with nullptr prevents access errors to undefined memory.



Inserting Elements into a BST

Insertion Algorithm:

If the tree is empty, create the 
root.

1.

Compare with the current node.2.

Go left if less.3.

Go right if greater.4.

Repeat until an empty spot is 
found.

5.

Node* insert(Node* root, int key) {
 // Base case: create a new node
 if (!root) 
 return new Node(key);
 
 // Recursively insert into the 
appropriate subtree
 if (key < root->key)
 root->left = insert(root->left, key);
 else if (key > root->key)
 root->right = insert(root->right, key);
 
 return root; // Return the root
}



Searching Elements in BST
Searching in a BST utilizes its ordered property to efficiently find elements. At each step, we eliminate half of the tree from consideration.

Node* search(Node* root, int key) {
    // �47>6O5 A;CG48: 45@56> ?CAB> 8;8 Q;5<5=B =4945=
    if (!root || root->key == key)
        return root;
    
    // �A;8 8A:><>5 7=4G5=85 <5=PH5 - 84U< 6;56>
    if (key < root->key)
        return search(root->left, key);
    
    // �=4G5 84U< 6?@46>
    return search(root->right, key);
}

1

Start Search

Compare with root

2

Choose Direction

Left or Right

3

Result

Found or Not Found



Tree Traversal
Tree traversal is the systematic visiting of all nodes. Different types of traversals yield 
different orders of elements.

Pre-order

Root ³ Left ³ Right

Used for copying a tree

In-order

Left ³ Root ³ Right

Yields sorted values!

Post-order

Left ³ Right ³ Root

Used for deleting a tree

In-order Traversal Example Implementation:

void inorder(Node* root) {
 if (!root) return; // �47>6O9 A;CG49
 
 inorder(root->left); // �5E>48< ;56>5 ?>445@56>
 cout << root->key << " "; // �O6>48< B5:CM89 C75;
 inorder(root->right); // �5E>48< ?@46>5 ?>445@56>
}



Deleting elements from BST
Deletion is the most complex operation in a BST. It is necessary to preserve the tree's 
properties after deleting a node.

Case 1: Leaf Node

A node with no children is simply deleted without additional operations.

Case 2: One Child

The node is replaced by its only child, and connections are re-established.

Case 3: Two Children

The node is replaced by the minimum element from its right subtree (or 
maximum from its left).



Analysis of BST Operation Complexity

0

4

8

12

Search Insertion Deletion
Average Case Worst Case

Average Case: O(log n)

In a balanced tree, the height is proportional to the logarithm of the 
number of elements.

Worst Case: O(n)

A degenerate tree (similar to a linked list) requires traversing all 
elements.



Key Takeaways

1

Hierarchical Structure

Trees naturally represent hierarchical relationships between data, making them 
indispensable in many programming areas.

2

Foundation for Complex Structures

BSTs serve as a foundation for more advanced structures: AVL trees, Red-Black 
trees, and B-trees are used in real-world systems.

3

Efficiency of Operations

In the average case, BSTs provide logarithmic time for basic operations, which is 
significantly better than linear data structures.

4

Importance of Balancing

BST performance is critically dependent on balancing. A degenerate tree loses all 
advantages over a regular list.



Reinforcement Questions

Discuss the answers with colleagues or your instructor. Understanding these 
questions is key to successfully applying trees in programming!

Question 1

How does a BST differ from a 
regular binary tree?

Think about the key property of 
ordered elements in a BST.

Question 2

Which tree traversal method yields 
sorted data?

Recall the order of node visits in 
different types of traversals.

Question 3

When does a BST degrade into a linked list?

Consider how the order of insertion affects the tree's structure.



�  What's Next?
Continuing Your Learning
This is just the beginning of your journey into the world of data structures! 
Understanding trees opens doors to exploring more complex algorithms and 
structures.

1
Workshop Tasks

Implement a complete BST class with insertion, search, deletion operations, 
and various traversal methods.

2
Practical Exercises

Measure tree depth, find minimum and maximum elements, verify BST 
correctness.

3
Further Study

AVL trees, Red-Black trees, B-trees 3 these are the next steps in mastering 
data structures.

"The best way to learn data structures is to implement them yourself!"


