Introduction to Trees. Binary
Search Trees

Welcome to the lecture on one of the most important data structures in programming!
Today, we will explore trees and their special type — binary search trees.

107110011 lOODll.‘i‘_ibf. If 1THI01010 1000110101071 0010
rgliioeo 11000G00T3} 11010001000001 11001011007 100110

11110 11011 100071 T L LN 101011 10101
00101 10101 01010 110147100110 10010 DI011
1001 10001 1009 101111 00101 00
11 wri10 10110 10101 01001 111001071001001
1ot 1ol 10101 110011 01001 10000711C00100Y
o1oo| 01110 11010 101011 Q1101 16101
10001 11108 11000 10011 16701 10011 10100
1011 11101 10711 11101 1015700 10011 10101
1011011001 101 1000000C071107 111010110010011 10101010101010710

10111101 10077071 11110107110M1 110071110110110010

— o AEeeN=U=x

SCIENCE

" | Lecture 14

Introduction to Trees. Binary Search Trees (BST)

Data structures are the foundation of effective programming. Trees are a powerful tool for organizing and searching for information, which we actively
use in modern applications and systems.

Lecture Objectives

Understanding the Structure Practical Skills Applying Knowledge

To study the hierarchical nature of trees To learn how to implement Binary Search To understand where and how to use BSTs
and their basic properties Trees (BST) in C++ in real projects

® Part 1

What is a Tree?

A tree is a hierarchical data structure that naturally organizes information on the
'parent-child' principle. Unlike linear structures (arrays, lists), trees allow for the
representation of complex relationships between elements.

01

Nodes

Fundamental elements of a tree, containing data

02

Edges

Connections between nodes, defining the structure

03

Root

The primary node from which the tree originates

04

Leaves

Nodes without children, the endpoints of branches

Examples of Trees in Everyday Life

File System Organizational Structure

Folders contain files and subfolders, forming a Director > managers - employees. Each
tree-like hierarchy. The root folder contains all management level represents a node in the
other system elements. company's hierarchy.

Family Tree

Parents and descendants form a natural tree-
like structure, showing family relationships.

Key Terms

Tree Height

The maximum distance from the root to any leaf. Defines the depth of the
longest branch.

Node Depth

The distance from the root to a specific node. The root has a depth of O.

Subtree

A part of a tree that is itself a tree with its own root and descendants.

Node Degree

The number of direct children of a node. In a binary tree, the degree does not
exceed 2.

Types of Trees

. Balanced Tree
Binary Tree ﬁi
Each node has no more than 2 children éIé -(Ij-ir:“?err]et)lsits ;fotzet:grt] ?nd iz SUIsfELEE
Binary Search Tree @ Complete Binary Tree
An ordered tree with special properties for All levels are filled, except possibly the last

fast searching one

Part2

Binary Search Trees (BSTSs)

A Binary Search Tree (BST) is a special type of binary tree where elements are
arranged in a specific order. This key property makes search, insertion, and deletion

operations very efficient.

Main BST Property: For any given node, all values in its left subtree are less than
the node's value, and all values in its right subtree are greater than the node's value.

Let's verify the property:

8
/A « Node 8: left subtree {1,3,4,6,7} < 8
/3\ [e Right subtree {10,134} >8
1 6 14 e Node3:1<3<6
/\ e Node10:10< 14
4 7 13

This example demonstrates how the fundamental property of BSTs is maintained: left
children are less than the parent, and right children are greater.

Applications of BST in Programming

% S E

Fast Search Databases Dictionaries and Sets
The average search complexity of O(log n) Database indexes are often implemented using STL containers std::set and std::map in C++ use
makes BST ideal for frequently performed balanced search trees for quick record access. balanced search trees for efficient operation.

search operations in large datasets.

Implementing a Tree Node in C++

Let's start by defining the basic node structure. Each node contains data and pointers to its left and right children.

struct Node {
int key; // 3Ha4veHVe y3na
Node* left; // Yka3aTtenb Ha /IeBOro NoToMka
Node* right; // Yka3aTenb Ha NpaBoro NnoToMka

/1 KOHCTPYKTOP 419 UHULManm3aunm ysna
Node(int k) : key(k), left(nullptr), right(nullptr) {}

[J Important: Initializing pointers with nullptr prevents access errors to undefined memory.

Binary Search

Inserting Elements into a BST

Insertion Algorithm: . .
g Node* insert(Node* root, int key) {
1. If the tree is empty, create the _// Base case: create a new node
root. if ('root)
return new Node(key);
2. Compare with the current node. (key)
3. Go leftif less. // Recursively insert into the
4. Goright if greater. appropriate subtree
5. Repeat until an empty spot is if (key < root->key)

root->left = insert(root->left, key);
else if (key > root->key)
root->right = insert(root->right, key);

found.

return root; // Return the root

}

Searching Elements in BST

Searching in a BST utilizes its ordered property to efficiently find elements. At each step, we eliminate half of the tree from consideration.

Node* search(Node* root, int key) {
// Ba3oBble Cnyyau: AepeBo MyCTO UKW SNeMEHT HalAeH
if (Iroot | | root->key == key)
return root;

// Echn nckomoe 3HayeHue MeHblLue - AEM BNeBO
if (key < root->key)

return search(root->left, key);

// IHaye naém Bnpaso
return search(root->right, key);

1 2 3

Start Search Choose Direction Result

Compare with root Left or Right Found or Not Found

Tree Traversal

Tree traversal is the systematic visiting of all nodes. Different types of traversals vield
different orders of elements.

Pre-order In-order

Root - Left > Right Left > Root - Right
Used for copying a tree Yields sorted values!
Post-order

Left > Right > Root

Used for deleting a tree

In-order Traversal Example Implementation:

void inorder(Node* root) {
if (Iroot) return; // ba3oBbIli cnyyar

inorder(root->left); // O6xoanm neBoe noaaepeso
cout << root->key << ""; // BbIBOAUM TeKyLL1I y3en

inorder(root->right); // O6xoaxm NpaBoe NoaLepesBo

}

POST-ORDER

X /

/

Binary Search Tree
Deletion Cases Diagram -

Deleting elements from BST

Deletion is the most complex operation in a BST. It is necessary to preserve the tree's
properties after deleting a node.

£ Case 1: Leaf Node

A node with no children is simply deleted without additional operations.

S Case 2: One Child

The node is replaced by its only child, and connections are re-established.

[Case 3: Two Children

The node is replaced by the minimum element from its right subtree (or
maximum from its left).

Analysis of BST Operation Complexity

12 =

8 -

4 -

0 | r T

Search Insertion Deletion
Average Case [Worst Case

Average Case: O(log n) Worst Case: O(n)
In a balanced tree, the height is proportional to the logarithm of the A degenerate tree (similar to a linked list) requires traversing all

number of elements. elements.

Key Takeaways

- s

Hierarchical Structure

Trees naturally represent hierarchical relationships between data, making them
indispensable in many programming areas.

e

Foundation for Complex Structures

BSTs serve as a foundation for more advanced structures: AVL trees, Red-Black
trees, and B-trees are used in real-world systems.

e

Efficiency of Operations

In the average case, BSTs provide logarithmic time for basic operations, which is
significantly better than linear data structures.

e

Importance of Balancing

BST performance is critically dependent on balancing. A degenerate tree loses all
advantages over a regular list.

SEARCH |

Reinforcement Questions

Question 1 Question 2

How does a BST differ from a Which tree traversal method vields
regular binary tree? sorted data?

Think about the key property of Recall the order of node visits in
ordered elements in a BST. different types of traversals.
Question 3

When does a BST degrade into a linked list?

Consider how the order of insertion affects the tree's structure.

[J Discuss the answers with colleagues or your instructor. Understanding these
questions is key to successfully applying trees in programming!

© What's Next?

Continuing Your Learning

This is just the beginning of your journey into the world of data structures!
Understanding trees opens doors to exploring more complex algorithms and
structures.

Workshop Tasks

1 Implement a complete BST class with insertion, search, deletion operations,
and various traversal methods.

Practical Exercises

2 Measure tree depth, find minimum and maximum elements, verify BST
correctness.
Further Study

3 AVL trees, Red-Black trees, B-trees — these are the next steps in mastering

data structures.

"The best way to learn data structures is to implement them yourself!"

Data Structures
& Algorithms

